Fuzzy Scalar Field Theory as a Multitrace Matrix Model
نویسنده
چکیده
We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. Eventually, we apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.
منابع مشابه
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CP n?
We perform a high-temperature expansion of scalar quantum field theory on fuzzy CP to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and the phase diagram is analyzed for various n. Our results confirm the findings of a previous numer...
متن کاملA Multitrace Matrix Model from Fuzzy Scalar Field Theory
We present the analytical approach to scalar field theory on the fuzzy sphere which has been developed in hep-th/0706.2493. This approach is based on considering a perturbative expansion of the kinetic term in the partition function. After truncating this expansion at second order, one arrives at a multitrace matrix model, which allows for an application of the saddle-point method. The results ...
متن کاملA matrix phase for the φ scalar field on the fuzzy sphere
The critical properties of the real φ scalar field theory are studied numerically on the fuzzy sphere. The fuzzy sphere is a finite matrix (non–commutative) approximation of the algebra of functions on the usual two dimensional sphere. It is also one of the simplest examples of a non–commutative space to study field theory on. Aside from the usual disordered and uniform phases present in the co...
متن کاملUniform order phase and phase diagram of scalar field theory on fuzzy C
We study the phase structure of the scalar field theory on fuzzy CPn in the large N limit. Considering the theory as a hermitian matrix model we compute the perturbative expansion of the kinetic term effective action under the assumption of distributions being close to the semicircle. We show that this model admits also a uniform order phase, corresponding to the asymmetric one-cut distribution...
متن کاملMultitrace Deformations of Vector and Adjoint Theories and their Holographic Duals
We present general methods to study the effect of multitrace deformations in conformal theories admitting holographic duals in Anti de Sitter space. In particular, we analyse the case that these deformations introduce an instability both in the bulk AdS space and in the boundary CFT. We also argue that multitrace deformations of the O(N) linear sigma model in three dimensions correspond to nont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008